DAV SR SEC PUBLIC SCHOOL, RIHANDNAGAR, SONEBHADRA [UP] #### CHEMICAL KINETICS # XII (CHEMISTRY) **CHAPTER - 4** - 1. Define rate of reaction. - 2. A reaction A \rightarrow B+ C has a rate constant of 4×10^{-4} mol L⁻¹ min⁻¹. - (a) What is the order of the reaction? - (b) What is the molarity of A after one hour if the initial concentration of A is 0.04 mol L⁻¹? - (c) What is the half-life of the reaction with $[A]_0 = 0.04 \text{ mol } L^{-1}$? - 3. The following table gives the concentration of NO as a function time in the reaction $$O_3 + NO \rightarrow NO_2 + O_2$$ | Time (s) | 0 | 0.011 | 0.027 | 0.052 | |-----------------------------|--------------------|----------------------|----------------------|----------------------| | [NO] (mol L ⁻¹) | 2×10^{-8} | 1.8×10^{-8} | 1.6×10^{-8} | 1.4×10^{-8} | Calculate the average rate of reaction between 0.011 and 0.027 s. Also find the instantaneous rate at 0 and 0.027 s. - 4. Write the rate law for the reaction $NO_2 + O_3 \rightarrow NO_3 + O_2$ if the reaction is of the first order with respect to each reactant. The rate constant for the reaction is 1.9×10^4 L mol⁻¹ s⁻¹ at 298 K. What is the rate of the reaction when $[NO_2] = 1.8 \times 10^{-8}$ mol L⁻¹ and $[O_3] = 1.4 \times 10^{-7}$ mol L⁻¹? - 5. A substance decomposes at 500 K with a rate constant of 3.46×10^{-4} s⁻¹. Calculate the half-life of the reaction. What fraction will remain undecomposed if the substance is heated for 1 hour at 500 K? - 6. The following data were obtained for the reaction $A + B \rightarrow C + D$. | Experiment | [A] | [B] | Rate of formation of C
(mol L ⁻¹ s ⁻¹) | |------------|------|------|--| | 1. | 0.01 | 0.02 | 1×10 ⁻⁵ | | 2. | 0.02 | 0.03 | 3×10^{-5} | | 3. | 0.03 | 0.03 | 4.5×10^{-5} | | 4. | 0.02 | 0.04 | 4×10 ⁻⁵ | Calculate the rate of formation of C when $[A] = 0.05 \text{ mol } L^{-1}$ and $[B] = 0.05 \text{ mol } L^{-1}$. 7. The following data were obtained at 300 K for the reaction $2A + B \rightarrow C + D$. | Experiment | | [A] | [B] | Rate of formation of D
(mol L ⁻¹ s ⁻¹) | |------------|----|-----|-----|--| | | 1. | 0.1 | 0.1 | 7.5×10^{-3} | | | 2. | 0.3 | 0.2 | 9.0×10^{-2} | | | 3. | 0.3 | 0.4 | 3.6×10^{-1} | | | 4. | 0.4 | 0.1 | 3.6×10^{-2} | Calculate the rate of formation of D when $[A] = 0.08 \text{ mol } L^{-1}$ and $[B] = 0.5 \text{ mol } L^{-1}$. 8. The following data were obtained for the initial rate method; | Experiment | Initial concentration of A | Initial concentration of B | Initial rate of formation of C (mol L^{-1} s ⁻¹) | |------------|----------------------------|----------------------------|--| | 1. | 0.02 | 0.05 | 0.0125 | | 2. | 0.03 | 0.05 | 0.0125 | | 3. | 0.04 | 0.05 | 0.0125 | | 4. | 0.05 | 0.05 | 0.0045 | | 5. | 0.05 | 0.02 | 0.0020 | | 6. | 0.05 | 0.01 | 0.0005 | Find graphically the order of the reaction with respect to A and B. Find the rate constant of the reaction. # DAV SR SEC PUBLIC SCHOOL, RIHANDNAGAR, SONEBHADRA [UP] ### **CHEMICAL KINETICS** ### XII (CHEMISTRY) **CHAPTER - 4** 9. The rate of formation of C in the reaction $A+B\to C$ is dependent on the concentration of A as well as that of B. If the rate constant is 1×10^{-2} mol⁻¹ L s⁻¹, the order with respect to A is 1 and the rate of formation of C is 2.5×10^{-3} mol L⁻¹ S⁻¹. Find the order with respect to B if the initial concentrations of A and B are 0.5 mol L⁻¹. 10. NOCl decomposes as $2NOCl(g) \rightarrow NO(g) + Cl_2(g)$ | [NOCI] (mol L ⁻¹) | 0.1 | 0.2 | 0.3 | 0.4 | |-------------------------------|--------------------|--------------------|--------------------|----------------------| | Rate (mol $L^{-1} s^{-1}$) | 1×10^{-9} | 4×10 ⁻⁹ | 9×10 ⁻⁹ | 1.6×10 ⁻⁸ | Find the rate constant and the overall order of the reaction. 11. For the reaction $H_2 + 2NO \rightarrow N_2O + H_2O$, the following data were obtained. | [NO] (mol L ⁻¹) | 0.2 | 0.4 | 0.6 | 0.6 | |--|----------------------|--------|--------|--------| | [H ₂] (mol L ⁻¹) | 1 | 1 | 0.4 | 0.5 | | Rate (mol $L^{-1} s^{-1}$) | 3.6×10^{-3} | 0.0144 | 0.0129 | 0.0162 | Find the rate equation and rate constant with respect to each reactant. 12. For the reaction $2NO + Cl_2 \rightarrow 2NOCl$ the following data were obtained. | [NO] (mol L ⁻¹) | 0.3 | 0.4 | 0.4 | |---|-----------------------|-------|----------------------| | [Cl ₂] (mol L ⁻¹) | 0.5 | 0.5 | 0.3 | | Rate (mol L ⁻¹ min ⁻¹) | 6.75×10^{-3} | 0.012 | 7.2×10^{-3} | Find the rate equation and the rate constant. 13. The concentration of the reactant as a function of time for a first-order reaction was found to be as follows. | Time (min) | 0 | 2 | 4 | 10 | 15 | |---------------|-----|------|------|------|------| | Concentration | 1.0 | 1.12 | 1.27 | 1.82 | 2.46 | Find the rate constant graphically. 14. The rate constant for a first-order reaction is 5×10^{-2} s⁻¹. What is the half-life of the reaction? Find the time required for the concentration of the reactant to change from 0.5 mol L⁻¹ to 0.125 mol L⁻¹.. 15. A reaction of the first order was started with 1 mol L^{-1} of the reactant. It took 6.6 min for the concentration to become 0.1 mol L^{-1} . What is the half-life of the reaction? 16. A first-order reaction takes 100 minutes for completion of 60% of the reaction. Find the time required for 90% of the reaction to be completed. 17. For the reaction between bromine and formic acid the following data were obtained; the concentration of formic acid was virtually constant throughout the reaction. | Time (s) | 0 | 60 | 120 | 180 | 240 | 600 | |--|------|--------|--------|--------|--------|--------| | [Br ₂] (mol dm ⁻³) | 0.01 | 0.0081 | 0.0066 | 0.0053 | 0.0044 | 0.0013 | What is the order of the reaction? 18. The concentration of the reactant for a reaction as a function of time is as follows. | Time (min) | 0 | 2 | 4 | 6 | 10 | |------------------------------|-----|------|------|------|------| | Conc. (mol L ⁻¹) | 0.5 | 0.35 | 0.28 | 0.22 | 0.17 | Find the rate constant for the reaction. ## DAV SR SEC PUBLIC SCHOOL, RIHANDNAGAR, SONEBHADRA [UP] #### **CHEMICAL KINETICS** ### XII (CHEMISTRY) **CHAPTER - 4** 19. A study of the rate of dimerisation of C₄H₆ gave the following data. | Time (min) | 0 | 10 | 50 | 100 | 150 | 200 | |---|-----|-------|------|-------|-------|------| | [C ₄ H ₆] (mol L ⁻¹) | 0.1 | 0.095 | 0.08 | 0.067 | 0.057 | 0.05 | Find the rate constant. 20. For the reaction $C_2H_6 \rightarrow 2CH_3$ the pressure was recorded as follows. | Time (min) | 0 | 10 | 20 | 30 | 60 | |------------|-----|-------|--------|--------|-------| | p (Torr) | 0.1 | 0.072 | 0.0519 | 0.0374 | 0.014 | Show that it is a first-order reaction and find the rate constant. - 21. The rate constant of a first-order reaction becomes six times the original rate constant when the temperature is increased from 350 K to 410 K. Calculate the energy of activation for the reaction. - 22. The slope of the line in the graph of $\log k$ vs 1/T for a reaction is -5400 K. Calculate the energy of activation for this reaction. - 23. The rate constants for a reaction as a function of temperature are given below. | Temperature (K) | 200 | 300 | 400 | 500 | |----------------------------------|-----------------------|-----------------------|-----------------------|-----------------------| | Rate constant (s ⁻¹) | 2.98×10^{-5} | 1.65×10^{-6} | 1.22×10^{-8} | 4.07×10^{-8} | Find the activation energy of the reaction graphically and rate constant at 600 K. - 24. For the first-order hydrolysis of sucrose, the rate constant at 300 K is 2.1×10^{-11} s⁻¹ and 8.5×10^{-11} at 310 K. Find the Arrhenius constant and the activation energy. - 25. The rate constant for the decomposition of a substance is 3890 L mol⁻¹ s⁻¹ at 300 K and 2.62×10^5 L mol⁻¹ s⁻¹ at 400 K. Find the Arrhenius constant and the activation energy. - 26. The rate constants for the decomposition of acetaldehyde as a function of temperature are given below. | Temperature (K) | 600 | 700 | 800 | 850 | 900 | 950 | |--|-----------------------|------|-------|------|------|------| | k (L mol ⁻¹ s ⁻¹) | 5.09×10^{-5} | 0.01 | 0.515 | 2.62 | 11.1 | 40.6 | Find the Arrhenius constant \boldsymbol{A} and also the activation energy graphically. 27. If $\Delta [NO_3]/\Delta t$ is -2.5×10^{-2} mol L⁻¹ s⁻¹ in the following reaction, find the rate of appearance of NO₂. $$NO_3 + NO \rightarrow 2NO_2$$ 28. Sucrose $(C_{12}H_{22}O_{11})$ hydrolyses to glucose $(C_6H_{12}O_6)$ as $C_{12}H_{22}O_{11}(aq) + H_2O(l) \rightarrow C_6H_{12}O_6(aq)$. The reaction is considered to be a pseudo-first-order reaction if a large excess of water is used. Determine the pseudo-first-order rate constant from the following data. | Time (s) | 0 | 612 | 1600 | 3160 | |---|-------|-------|-------|-------| | [C ₁₂ H ₂₂ O ₁₁] (mol L ⁻¹) | 0.562 | 0.541 | 0.509 | 0.462 | ************************