<u>UNIT-VI</u>

(CONTINUITY & DIFFERENTIABILITY)

1 MARKS QUESTION

TIMI	ARRSQUESTION	
1.	Is real function $f(x) = \frac{1}{x}$ is continuous function.	1
2.	What is the value of continuous function $f(x)$ at $x = 3$, If $\lim_{x \to 3^{-}} f(x) = K$?	1
3.	Give an example of a function which is continuous at a point but not differentiable at that point.	1
4.	If $f(x) = \frac{x^2 - 9}{x + 3}$ is continuous function, then find the value of $f(3)$.	1
5.	If $f(x) = \begin{cases} x, & x < 0 \\ -5, & x > 0 \end{cases}$ for what value of m , $f(x)$ is continuous at $x = 0$.	1
6.	For what value of $b, f(x) = \begin{cases} \frac{1}{b}, & x \neq 1 \\ 0, & x = 1 \end{cases}$ is continuous at $x = 1$?	1
7.	If possible, write an interval of $[x]$ such that $f(x) = [x]$ is continuous, where $[x]$ is greatest	1
	integer function.	
8.	If $f'(0)=5$. Is $f(x)$ is continuous at $x = 0$?	1
9.	If $y = \sin x^2$, find $\frac{dy}{dx}$	1
10.	If $y = \log_x^x$. Find $\frac{dy}{dx}$	1
11.	Differentiate $(\tan^{-1} x)^2$ W.r.t. $\tan^{-1} x$	1
12.	Differentiate $\cos^{-1}(\frac{\pi}{2})$ w.r.t. x.	1
13.	If $y = \sin^{-1}(\frac{1}{\sqrt{2}})$. Find $\frac{dy}{dx}$	1
14.	Is graph Shows that function is differentiable on R.	1
15.	If $f(x) = \frac{ x }{x}$. Find $f'(x)$ when $x > 0$.	1
16.	Differentiate $e^{\sin x}$ w.r.t. $\sin x$.	1
17.	If y is independent from x. What is $\frac{dy}{dx}$?	1
18.	Is $x + y = 5$ is implicit or explicit from of x?	1
19.	If u, v and w are function of x , then write product rule of differentiation, for	1
	<i>u.v.w</i> , <i>w.r.t. x</i> .	

1

20. Differentiate tan(2x+3) w.r.t. x.

4 MARKS QUESTIONS (Continuty)

1.

Discuss the continuity of the function $f(x) = \begin{cases} \\ \\ \\ \\ \\ \end{cases}$

$$f(x) = \begin{cases} \frac{|x|}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$
(1+2+1)

2+2

2+2

2+2

2.

Show that $f(x) = \begin{cases} 2x+1, & x \ge 2\\ 5, & 0 < x < 2\\ x^2+3, & x \le 0 \end{cases}$ is continuous at x = 2.

- 3. Show that every polynomial function is continuous.
- 4. Determine whether f defined by $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is a continuous function or not ?
- 5. Find the value of k so that the given function is continuous at the given point 2+2

$$f(x) = \begin{cases} \frac{1 - \cos 4x}{x^2}, & x \neq 0\\ k + 1, & x = 0 \text{ at } x = 0 \end{cases}$$

10.

Let *f* be the function
$$f(n) = \frac{\sqrt{1+n}}{n}, n \neq 0$$

- (a) $\lim_{n \to 0} f(n)$
- (b) Is it possible to make it continuous
- (c) What is/ are the point of continuity
- (d) What choice, if any of *f*(0) will make it continuous at x=0 ?
- 7. Given that f(x) = [x] where [.] is the greatest integer function.
 - (a) Is *f*(*x*) continuous at x?
 - (b) Check the continuity of f(x) at x = 25
 - (c) What are the points of discontinuity of f(x)?

8. If
$$y = \cot^{-1} \sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}}$$
 find $\frac{dy}{dx}$ 2+2

9. If
$$x = \sqrt{a^{\sin^{-1}}t}$$
: $y = \sqrt{a^{\cos^{-1}}t}$ show that $\frac{dy}{dx} = \frac{-y}{x}$ 2+2

Find
$$\frac{dy}{dx}$$
 2+2

(a)
$$y = \cos\left(\sin\sqrt{ax+b}\right)$$

(b) $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

11. If
$$y + \sin y = \cos x$$

Show that $\frac{dy}{dx} = \frac{-\sin x}{1 + \cos x}$ 2+2

12. Find
$$\frac{dy}{dx}$$
 2+2

$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$$

13. It

(a)
$$y = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}}$$

(b) $y = \sin 2x - \sin 3x$ Find $\frac{dy}{dx}$

14. Differentiate $\sin^2 x$ w.r.t $e^{\cos x}$

15. Find
$$\frac{dy}{dx}$$

 $x = \alpha(\theta + \sin \theta)$
it $y = \alpha(1 - \cos \theta)$
2+2

6 MARKS QUESTIONS

1. Differentiate $(x^2 - 5x + 8)(x^3 + 7x + 9)$ in their ways mentioned below 2+2+2

- (a) By using product rule
- (b) By expanding the product to obtain a single polynomial
- (c) By logarithmic differentiation

2. For a positive constant 'a' where
$$y = a\left(t + \frac{1}{t}\right)$$
 and $x = \left(t + \frac{1}{t}\right)^a$ 2+2+2

Find:

$$(i) \frac{dy}{dt}$$

$$(ii) \frac{dx}{dt}$$

$$(iii) \frac{dy}{dx}$$
3. Find $\frac{dy}{dx}$ if $x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$, $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$
4. Find $\frac{dy}{dx}$ if $y^x + x^y + x^x = a^b$
5. If $(x-a)^2 + (y-b)^2 = c^2$ prove that $\frac{\left[1 + \left((\frac{dy}{dx})^2\right)\right]^{3/2}}{\frac{d^2 y}{dx^2}}$
Is a constant independent of 'a' and 'b'

6. If
$$y = (\tan^{-1} x)$$
. Show that $(x^2 + 1)^2 y_2 + 2x(x^2 + 1) y_2 = 2$
7. If $\cos y = x \cos(a + y)$ Prove that $\frac{dy}{dx} = \frac{\cos^2(a + y)}{\sin a}$

2+2

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x}, & x < 0 \\ c & \text{for } x = 0 \\ \frac{\sqrt{x+bx^2 - \sqrt{x}}}{bx^{3/2}} \end{cases}$$

for x > 0

If the function f(x) defined by $f(x) = \{ \log \frac{(1+ax) - \log(1-bx)}{x} \text{ if } x \neq 0 \}$

if x=0

Κ

Is continuous at x = 0 find K

¹⁰ Find
$$\frac{dy}{dx}$$
, when
 $y = \left(x + \frac{1}{x}\right)^x + x\left(x\frac{1}{x}\right)$

9.

2+2+2

6