(CONTINUITY \& DIFFERENTIABILITY)

1 MARKS QUESTION

1. Is real function $f(x)=\frac{1}{x}$ is continuous function.
2. What is the value of continuous function $f(x)$ at $x=3$, If $\lim _{x \rightarrow 3-} f(x)=K$?
3. Give an example of a function which is continuous at a point but not differentiable at that point.
4. If $f(x)=\frac{x^{2}-9}{x+3}$ is continuous function, then find the value of $f(3)$.
5. If $f(x)=\left\{\begin{array}{cc}x, & x<0 \\ -5, & x>0\end{array}\right.$ for what value of $m, f(x)$ is continuous at $x=0$.
6.

For what value of $b, f(x)=\left\{\begin{array}{ll}\frac{1}{b}, & x \neq 1 \\ 0, & x=1\end{array}\right.$ is continuous at $x=1$?
7. If possible, write an interval of $[x]$ such that $f(x)=[x]$ is continuous, where $[x]$ is greatest integer function.
8. If $f^{\prime}(0)=5$. Is $f(x)$ is continuous at $x=0$?

If $y=\sin x^{2}$, find $\frac{d y}{d x}$
10. If $y=\log _{x}^{x}$. Find $\frac{d y}{d x}$
11. Differentiate $\left(\tan ^{-1} x\right)^{2}$ W.r.t. $\tan ^{-1} x$
12.

Differentiate $\cos ^{-1}\left(\frac{\pi}{2}\right)$ w.r.t. x.
13. If $y=\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$. Find $\frac{d y}{d x}$
14. Is graph

Shows that function is differentiable on R.
15. If $f(x)=\frac{|x|}{x}$. Find $f^{\prime}(x)$ when $x>0$.
16. Differentiate $e^{\sin x}$ w.r.t. $\sin x$.
17. If y is independent from x.What is $\frac{d y}{d x}$?
18. Is $x+y=5$ is implicit or \exp licit from of x ?
19. If u, v and w are function of x, then write product rule of differentiation, for u.v.w, w.r.t. x.
20. Differentiate $\tan (2 x+3)$ w.r.t. x.
1.

Discuss the continuity of the function $f(x)= \begin{cases}\frac{|x|}{x} & x \neq 0 \\ 0 & x=0\end{cases}$
2.

Show that $f(x)=\left\{\begin{array}{cc}2 x+1, & x \geq 2 \\ 5, & 0<x<2 \\ x^{2}+3, & x \leq 0\end{array} \quad\right.$ is continuous at $x=2$.
3. Show that every polynomial function is continuous.
4.

Determine whether f defined by $f(x)=\left\{\begin{array}{cl}x^{2} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is a continuous function or not ?
5. Find the value of k so that the given function is continuous at the given point

$$
f(x)=\left\{\begin{array}{cc}
\frac{1-\cos 4 x}{x^{2}}, & x \neq 0 \\
k+1, & x=0 \text { at } x=0
\end{array} .\right.
$$

6.

Let f be the function $f(n)=\frac{\sqrt{1+n}}{n}, n \neq 0$
(a) $\lim _{n \rightarrow 0} f(n)$
(b) Is it possible to make it continuous
(c) What is/ are the point of continuity
(d) What choice, if any of $f(0)$ will make it continuous at $x=0$?
7. Given that $f(x)=[x]$ where [.] is the greatest integer function.
(a) Is $f(x)$ continuous at x ?
(b) Check the continuity of $f(x)$ at $x=25$
(c) What are the points of discontinuity of $f(x)$?
8.

If $y=\cot ^{-1} \sqrt{\frac{1+\cos 2 x}{1-\cos 2 x}}$ find $\frac{d y}{d x}$
9. If $x=\sqrt{a^{\sin ^{-1}} t}: y=\sqrt{a^{\cos ^{-1}} t}$ show that $\frac{d y}{d x}=\frac{-y}{x}$
10.

Find $\frac{d y}{d x}$
(a) $y=\cos (\sin \sqrt{a x+b})$
(b) $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
11. If $y+\sin y=\cos x$

Show that $\frac{d y}{d x}=\frac{-\sin x}{1+\cos x}$
12. Find $\frac{d y}{d x}$
$y=\sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)(x-5)}}$
13. It
(a) $y=\frac{x \sin ^{-1} x}{\sqrt{1-x^{2}}}$
(b) $y=\sin 2 x-\sin 3 x$ Find $\frac{d y}{d x}$
14. Differentiate $\sin ^{2} x$ w.r.t $e^{\cos x}$
15. Find $\frac{d y}{d x}$
it $\begin{aligned} x & =\alpha(\theta+\sin \theta) \\ y & =\alpha(1-\cos \theta)\end{aligned}$

6 MARKS QUESTIONS

1. Differentiate $\left(x^{2}-5 x+8\right)\left(x^{3}+7 x+9\right)$ in their ways mentioned below
(a) By using product rule
(b) By expanding the product to obtain a single polynomial
(c) By logarithmic differentiation
2.

For a positive constant ' a ' where $y=a\left(t+\frac{1}{t}\right)$ and $x=\left(t+\frac{1}{t}\right)^{a}$
Find:

$$
\begin{aligned}
& \text { (i) } \frac{d y}{d t} \\
& \text { (ii) } \frac{d x}{d t} \\
& \text { (iii) } \frac{d y}{d x}
\end{aligned}
$$

3. Find $\frac{d y}{d x}$ if $x=\frac{\sin ^{3} t}{\sqrt{\cos 2 t}}, y=\frac{\cos ^{3} t}{\sqrt{\cos 2 t}}$
4. Find $\frac{d y}{d x}$ if $y^{x}+x^{y}+x^{x}=a^{b}$
5.

If $(x-a)^{2}+(y-b)^{2}=c^{2}$ prove that $\frac{\left[1+\left(\left(\frac{d y}{d x}\right)^{2}\right)\right]^{3 / 2}}{\frac{d^{2} y}{d x^{2}}}$
Is a constant independent of ' a ' and ' b '
6.

If $y=\left(\tan ^{-1} x\right)$. Show that $\left(x^{2}+1\right)^{2} y_{2}+2 x\left(x^{2}+1\right) y_{2}=2$
7.

If $\operatorname{Cos} y=x \cos (a+y) \operatorname{Pr}$ ove that $\frac{d y}{d x}=\frac{\cos ^{2}(a+y)}{\sin a}$
8. Determine the value of $a, b, \quad c$ for which the function $1+2+2+1$

$$
f(x)= \begin{cases}\frac{\sin (a+1) x+\sin x}{x} & , x<0 \\ \frac{c}{} & , \text { for } x=0 \\ \frac{\sqrt{x+b x^{2}-\sqrt{x}}}{b x^{3 / 2}} & \\ & \text { for } \mathrm{x}>0\end{cases}
$$

9.

If the function $\mathrm{f}(\mathrm{x})$ defined by $f(x)=\left\{\log \frac{(1+a x)-\log (1-b x)}{x}\right.$ if $x \neq 0$ Is continuous at $x=0$ find K
10 Find $\frac{d y}{d x}$, when

$$
y=\left(x+\frac{1}{x}\right)^{x}+x\left(x \frac{1}{x}\right)
$$

