DAV SR SEC PUBLIC SCHOOL, RIHANDNAGAR, SONEBHADRA [UP]

ELECTRO CHEMISTRY X

XII (CHEMISTRY)

CHAPTER - 3

- If the cathode in a Cu–Zn cell is replaced by an Ni rod immersed in a 1 M solution of NiSO₄, how will the potential of the cell be affected? Will the potential of the Ni–Zn cell be greater, smaller or the same as that of the Cu–Zn cell?
- 2. Consider the cell
 - Zn | Zn²⁺ (0.01 M) || Fe²⁺ (0.01 M), Fe³⁺ (0.01 M) | Pt
 - (a) Write the equation for the spontaneous cell reaction.
 - (b) Which way do electrons flow in the external circiut during the spontaneous reaction?
 - (c) Write the reaction at each electrode in the spontaneous reaction.
 - (d) Evaluate E_{cell}^{\ominus} at 25°C and also E_{cell} at 25°C using the Nernst equation.
- 3 For a cell in which the reaction
 - $A + B \rightarrow C + D$
 - takes place, the emf is negative. What will be the direction of spontaneity of the reaction? Explain.
 - . What do you understand by corrosion?
 - What is cathodic protection? How is it different from galvanising?
- 6. What is electrolysis?

4.

5.

- 7. What are the products of electrolysis of the following?
 - (a) Molten NaCl (b) Aqueous solution of NaCl
- A voltaic cell with a basic aqueous electrolyte is based on the oxidation of Cd(s) to Cd(OH)₂(s) and the reduction of $MnO_4^-(aq)$ to $MnO_2(s)$.
 - (a) Write the half-reactions for the cells at the anode and cathode.
 - (b) Write the overall balanced cell reaction.
 - (c) Draw a diagram of the cell indicating all the details.

Long-Answer Questions

- 1. Describe the circuit for measuring conductance.
- 2. Explain the term emf of a cell.
- 3. Describe the standard hydrogen electrode.
- 4. How is a cell represented?
- 5. Describe the two types of electrochemical cells, giving examples.
- 6. Explain corrosion as an electrochemical process.
- 7. How can you prevent corrosion?
- 8. Write short notes on (i) galvanisation, and (ii) cathodic protection.
- 9. Write a short note on fuel cells.
- 10. Give the cell reactions for the following cells.
 - (a) $Pt(s) | Fe^{2+}$, $Fe^{3+} \vdots Cl^{-} | AgCl(s) | Ag(s)$
 - (b) $Pt(s) | H_2(g, 1 atm) | H_2SO_4 | PbSO_4(s) | Pb(s)$
 - (c) $Pt(s) | H_2(g, 1 atm) | HCl | Hg_2Cl_2(s) | Hg(l)$
 - (d) $Zn | Zn^{2+} || Fe^{3+}, Fe^{2+} | Pt$
 - (e) $Ag | Ag^+ | Br^- | AgBr(s) | Ag$

Numericals

- 1. The conductivity of a 0.1 M KCl solution is 1.289 S m⁻¹ at 25°C. What is the resistance of a conductance cell containing this solution, given that the electrodes are separated by 0.5 cm and have an area of cross section of 1 cm².
- 2. The conductance of a 0.1 M KCl solution was found to be 0.012 S. If the molar conductivity is 0.06 S m² mol⁻¹, calculate the cell constant of the cell.

P.T.O.

DAV SR SEC PUBLIC SCHOOL, RIHANDNAGAR, SONEBHADRA [UP]

ELECTRO CHEMISTRY XII (CHEMISTRY) CHAPTER - 3

- 3. The conductance of a 0.01 M KCl solution is 0.00141 S. Calculate its molar conductivity if the cell constant is 100 m⁻¹.
- 4. Calculate the limiting molar conductivity of ammonium hydroxide (NH₄OH) if the limiting molar conductivities of NaCl, NaOH and NH₄Cl are 126.45, 247.8 and 149.7 S cm² mol⁻¹ respectively.

[Hint: Write all the formulae in ionised form and obtain NH₄⁺ + OH⁻ from a combination of NaCl, NaOH and NH₄Cl.

$$\Lambda_{\rm NH_4OH}^0 = \lambda_{\rm NH_4}^0 + \lambda_{\rm OH^-}^0; \quad \Lambda_{\rm NH_4Cl}^0 = \lambda_{\rm NH_4}^0 + \lambda_{\rm Cl^-}^0; \quad \Lambda_{\rm NaCl}^0 = \lambda_{\rm Na^+} + \lambda_{\rm Cl^-}; \quad \Lambda_{\rm NaOH}^0 = \lambda_{\rm Na^+}^0 + \lambda_{\rm OH^-}^0$$

$$\begin{split} \Lambda_{\text{NH}_4\text{OH}} &= \Lambda_{\text{NH}_4'} + \Lambda_{\text{OH}^-}; \quad \Lambda_{\text{NH}_4\text{CI}} = \Lambda_{\text{NH}_4'}^{0} \\ \text{Hence } \Lambda_{\text{NH}_4\text{OH}}^0 &= \Lambda_{\text{NH}_4\text{CI}}^0 - \Lambda_{\text{NaCI}}^0 + \Lambda_{\text{NaOH}}^0. \end{split}$$

- 5. Calculate the degree of dissociation of a 0.01 M solution of an acid whose molar conductivity is 0.00163 S m² mol⁻¹ and molar conductivity at infinite dilution (Λ_m^0) is 0.03907 S m² mol⁻¹. Also find the equilibrium constant for the dissociation of this acid.
- 6. The dissociation constant of a 0.05 M solution of a weak acid was found to be 1×10^{-5} . What per cent of the acid remained undissociated at this concentration? If the molar conductivity at infinite dilution is 0.039 S m² mol⁻¹, what is the molar conductivity of this acid solution?
- 7. Calculate the molar conductivity at infinite dilution for a weak acid HX given that the conductance of a 0.05 M solution of it is 1.5×10^{-5} S using a cell of cell constant 1.5 cm⁻¹ and that the acid dissociation constant is 1×10^{-4} .
- 8. Calculate the amount of Cu deposited at an electrode due to the reaction $Cu^{2+} + 2e \rightarrow Cu$ when 1 A of current is passed through the solution for 30 min. The atomic mass of Cu is 63.5.
- 9. How much time is required to deposit 0.5 mol of Al according to the electrode reaction $Al^{3+} + 3e^- \rightarrow Al$ when 1.5 A of current is passed through the cell?
- 10. How much charge has to be passed through a cell containing a Zn^{2+}/Zn electrode so that 130.8 g of Zn is deposited at the electrode? Atomic mass of Zn = 65.4.
- 11. How much charge has to be passed through a cell containing molten NaCl so that 2.5 mol of chlorine gas is evolved at the corresponding electrode?
- 12. What is the mass of chlorine produced by the electrolysis of molten NaCl when a current of 5 A is passed through the melt for 20 min? Atomic mass of chlorine = 35.5.

[Note: Chlorine is liberated as Cl₂]

- 13. How much time is required for the deposition of 98.1 g of Zn according to the electrode reaction $Zn^{2+} + 2e \rightarrow Zn$ when 2 A current is passed through the cell. Atomic mass of zinc = 65.4.
- 14. How much current should be passed for one hour through a cell containing a Cu^{2+}/Cu electrode so that 4 g of Cu is deposited at the electrode. Atomic mass of Cu = 63.5.
- 15. How many hours does it take to reduce 3 mol of Fe³⁺ to Fe²⁺ with 2 A of current? [CBSE]
- 16. The standard potentials for the two electrodes in a cell are given as $E_{Cu^{2+}/Cu}^{\Theta} = 0.34 \text{ V}$; $E_{Ag^+/Ag}^{\Theta} = 0.8 \text{ V}$. Calculate the cell potential (*E*) for the cell containing 0.1 M Ag^+ and 4 M Cu^{2+} at 298 K. [CBSE]
- 17. Calculate the potential of a cell in which the following cell reaction occurs at 298 K. Sn

$$1^{++} (1.5 \text{ M}) + Zn(s) \rightarrow Sn^{2+} (0.5 \text{ M}) + Zn^{2+} (2 \text{ M})$$

The standard cell potential E^{Θ} of the cell is 0.89 V. State whether the cell potential will increase or decrease if the concentration of Sn⁴⁺ is increased in the cell. (R = 8.314 J K⁻¹ mol⁻¹, F = 96,500 C mol⁻¹). [CBSE]

1

{CBSE]

18. Consider a cell composed of two half-cells $Cu(s) | Cu^{2+}(aq)$ and $Ag(s) | Ag^{+}(aq)$. Calculate (a) the standard cell potential and (b) the cell potential when $[Cu^{2+}]$ is 2 M and $[Ag^+]$ is 0.05 M. Given $E^{\Theta}(Cu^{2+}/Cu) = 0.34 V$

$$E^{\Theta}(Ag^+/Ag) = 0.80 \text{ V}, R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$

 $F = 96,500 \text{ C mol}^{-1}$.

19. Calculate the emf of the following cell at 298 K.

Cd | Cd²⁺ (0.1 m) || Ag⁺ (0.1 m) | Ag
Given
$$E_{Cd^{2+}/Cd}^{\Theta} = -0.4 \text{ V}; E_{Ag^{+}/Ag}^{\Theta} = 0.8 \text{ V}.$$
 [CBSE]

DAV SR SEC PUBLIC SCHOOL, RIHANDNAGAR, SONEBHADRA [UP]

	,		
ELECT	FRO CHEMISTRY XII (CHEMISTR	Y) CHAPTER - 3	
20.	Calculate the emf of a cell with the following cell reaction.	alaha bada bata ta shakara shi ƙwallo	
	$\mathrm{Co}^{2+}(\mathrm{aq}) + \mathrm{Ba}(\mathrm{s}) \rightarrow \mathrm{Co}(\mathrm{s}) + \mathrm{Ba}^{2+}(\mathrm{aq})$	e a George de Carlos de Carlos e constante	
	Given that $E_{Co^{2+}/Co}^{\Theta} = -0.28 \text{ V}$ and $E_{Ba^{2+}/Ba}^{\Theta} = -2.9 \text{ V}$.		
	The concentrations of Ba $^{2+}(aq)$ and Co $^{2+}(aq)$ are 1×10^{-5} M and 0.1 M	respectively. [CBS	SE
21.	Calculate the emf of a cell with the following cell reaction. $Cu(s) + 2Ag^+(aq) \rightarrow Cu^{2+} + 2Ag(s)$ Circuin that $F^{\Phi} = -0.24$ V and $F^{\Phi} = -0.8$ V		
	Given that $E_{Cu^{2+}/Cu}^{\Theta} = 0.34 \text{ V}$ and $E_{Ag^+/Ag}^{\Theta} = 0.8 \text{ V}$.		
	The concentrations of Cu^{2+} and Ag^+ are 0.05 M and 0.01 M respective	ely. [CBS	SE
22.	Calculate the emf of a cell whose half-cell reactions are as follows. $Zn \rightarrow Zn^{2+} + 2e^{-}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$		
	The standard reduction potentials of the two half-cells are $E_{Zn^{2+}/Zn}^{\Theta} =$	$-0.76 \text{ V} \text{ and } E_{\text{Cu}^{2+}/\text{Cu}}^{\Theta} = 0.34 \text{ V}.$	
	The concentrations of Zn^{2+} and Cu^{2+} are both 0.1 M.	en a grand of the second of the second s	
23.	Calculate the emf of the following cell at 298 K.	in the manufacture of the second second	
	Co Co ²⁺ (0.1 M) Ag ⁺ (0.1 M) Ag ⁺ i of galaxies of the term d		
	Given that $E_{Co^{2+}/Co}^{\Theta} = -0.28 \text{ V}$ and $E_{Ag^+/Ag}^{\Theta} = 0.8 \text{ V}$.	[CBS	SE
24.	Calculate the emf of the following cell at 298 K.		
	Fe Fe ²⁺ (0.1 M) Ag ⁺ (0.1 M) Ag		
	Given that $E_{\text{Fe}^{2+}/\text{Fe}}^{\Theta} = -0.44 \text{ V}$ and $E_{\text{Ag}^+/\text{Ag}}^{\Theta} = 0.8 \text{ V}$.	[CBS	SE
25.	Calculate the emf of the following cell at 298 K. Sn Sn ²⁺ (0.1 M) Ag ⁺ (0.1 M) Ag		
	Given that $E_{\text{Sn}^{2+}/\text{Sn}}^{\Theta} = -0.14 \text{ V}; \ E_{\text{Ag}^{+}/\text{Ag}}^{\Theta} = 0.8 \text{ V}.$		SE
26.	Calculate the emf of the following cell.		
	Mg Mg ²⁺ (0.001 M) Cu ²⁺ (0.0001 M) Cu		
	Given that $E_{Cu^{2+}/Cu}^{\Theta} = 0.337 \text{ V}$ and $E_{Mg^{2+}/Mg}^{\Theta} = -2.37 \text{ V}$.		i.
	Also determine the value of the standard free energy change (ΔG^{Θ}) f	or the cell.	SE
27.	The emf of a cell whose cell reaction at 298 K is		
	$Mg + 2Ag^+ \rightarrow Mg^{2+} + 2Ag$		
	is 3.38 V. Given that the concentration of Mg ²⁺ ions is 25 times that potentials are $E_{Mg^{2+}/Mg}^{\Theta} = -2.37 \text{ V}$ and $E_{Ag^+/Ag}^{\Theta} = 0.8 \text{ V}$, find the concent		
28.	The potential of the cell		
	$Pt(s) H_2(g, 1 atm) H^+ (1 M) Fe^{3+}, Fe^{2+} Pt(s)$		
	is 0.8 V. If the concentration of Fe^{2+} is 0.0323 M, what is the concentration	ation of Fe ³⁺ ? $E_{\text{Fe}^{3+}/\text{Fe}^{2+}}^{\Theta} = 0.771 \text{ V}.$	
29.	Calculate the cell potential of the given cell at 25°C ($R = 8.34$ J K ⁻¹ me		
	Ni(s) Ni ²⁺ (0.01 M) Cu ²⁺ (0.1 M) Cu(s)		OT
	Given that $E_{Cu^{2+}/Cu}^{\Theta} = 0.34 \text{ V}$ and $E_{Ni^{2+}/Ni}^{\Theta} = -0.25 \text{ V}$.	[CBS	
30.	For what concentration of $Ag^+(aq)$ will the emf of the given cell be z 0.1 M?	ero at 25°C, if the concentration of $Cu^{2+}(aq)$) i
	• $Cu(s) Cu^{2+} (0.1 \text{ M}) Ag^{+}(aq) Ag(s)$		
	Given that $E_{Ag^+/Ag}^{\Theta} = 0.8 \text{ V}$ and $E_{Cu^{2+}/Cu}^{\Theta} = 0.34 \text{ V}$.	[CBS	SE
