<u>UNIT - II</u>

(FUNCTIONS)

1.	ONE MARKS QUESTION If f: Let $f: N \to N$ and $g: N \to N$ defined as $f(x) = x + 1$ and $g(x) \ R \to R$ is	1
	defined as $f(x) = x^2 + 1$, find $f(-2)$.	
2.	Give an example of one-one function.	1
3.	Write the condition for a function $f: R \to Y$ to be injective.	1
4.	Whether the function Shown in diagram in onto of not.	1

5.	Let * be a binary operation on R defined as $a * b = a - b$. Determine whether * is				
	cumulative of not.				
6.	Let $f = \{(1, 4), (2, 5), (3, 7)\}$, find f^{-1} .	1			
7.	Let $f: R - R$ is defined as $f(x) = x^2$, then find Range of f .	1			
8.	If $f(x) = 8x$ and $g(x) = x$ then find g of (x).	1			
9.	If $f(x) = x , x R$, find $f(-2)$.	1			
10.	Let $A = \{1, 2, 3, 4\}$ and $f = \{(1, 4), (2, 1), (3, 3), (4, 2)\}$ then write down f of (2)	1			
11.	If $f: R \to R$ be defined by $f(x) = \begin{cases} 2x+3, when \ x < 2 \\ x^2-2, when \ 2 \le x < 3 \end{cases}$	1			
Find $f(2)$					
12.	It <i>f</i> is identity function and $f(x) = 5$ then find <i>x</i> .	1			
13.	Let * be a binary operation defined by a * b = $2a+b$ the find $3*4$	1			
14.	Write the necessary and sufficient condition for a function $f: X \rightarrow Y$ to be invertible.	1			
15.	Let $f = \{(1,1), (1,2), (2,4), (2,5)\}$. Whether it is a function or not.	1			

	FUNCTIONS	SIX MARKS QUESTION	
21.	If $f(x) = \sqrt{x+1}$, $x \in \mathbb{R}+$ find $f(3)$. When $f: \mathbb{R}^+ \to \mathbb{R}^+$		1
20.	Let $f = \{(1,3), (2,3), (3,5)\}$. Find f^{-1} if exists.		1
19.	Whether *: $R \times R \rightarrow R$ given $a * b = a + 2b$ is associative	or not.	1
18.	Let $f(x) = [x]$, greatest integral function, find $f(-2.1)$		1
17.	Let $f = \{(1,2), (3,5), (4,1)\}$ and $g = \{(1,3), (2,3), (5,1)\}$ then	n find g of (3)	1
16.	Let $f(x) = \frac{1}{x}, x \neq 0$ then find f of (2)		1

1. Show that function $f: R \to \{x \in R : -1 < x < 1\}$ defined by $f(x) = \frac{x}{1+|x|}$; $x \in R$ is one-one

and on to.

2. Set $f: R \to R$ and $g: R \to R$ are defined as f(x) = x + |x+1| and g(x) = x + 1 + |x| find (fog) (x) and (g of) (x) 6

6

3. If $f:[-2,2] \rightarrow [2,2]$ defined as $f(x) = \sqrt{4-x^2}$ show that f is injective. Also find f^1

4. Let
$$f(x) = 2x + 3$$
 and $g(x) = [x]$ find
(i) f og (ii) g of (iii) f of (iv) fog(3/2) (v) g of (-5/3) (vi) f of (o) 6

5. Show that if $f: R - \left\{\frac{7}{5}\right\} \to R - \left\{\frac{3}{5}\right\}$ is defined by $f(x) = \frac{3x+4}{5x-7}$ and $g: R - \left\{\frac{3}{5}\right\} \to R - \left\{\frac{7}{5}\right\}$ is defined by $g(x) = \frac{7x+4}{5x-3}$ then fog = I_A and gof = I_B where $A = R - \left\{\frac{2}{5}\right\}$: $I_A(x) = x$, $\forall x \in A. I_B(x) = x, \forall x \in B$ are caused idendity functions on Sets A and B respective; y Also find fog $\left(\frac{7}{5}\right)$ and gof $\left(\frac{3}{5}\right)$

6. If $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$ show that $f: N \to S$, Where *S* 6 is the range of *f* is invertible. Find the inverse of *f*.

7. If
$$f: w \to w: f(x) = \begin{cases} x-1 & \text{when } x \text{ is odd} \\ x+1 & \text{when } x \text{ is even} \end{cases}$$
 Show that f is one – one and onto. find f^{-1} 6

8. If
$$f:\left[\frac{-\pi}{2},\frac{\pi}{2}\right] \rightarrow [-1,1]$$
 defined by $f(x) = \sin x$
and $g:[0,\pi] \rightarrow [-1,1]$ defined by $g(x) = \cos x$
Show that fog is invertible but $f + g$ is not

9. Let
$$f: N \to N$$
 and $g: N \to N$ defined as $f(x) = x+1$ and $g(x) \begin{cases} x-1 & \text{if } x > 1 \\ 1 & \text{if } x = 1 \end{cases}$

Show that *fog* is onto but *f* is not onto

10. Given a non-empty set *x*, consider the binary operation $*:P(x)xP(x) \rightarrow P(x)$. Given by 6 $A*B = A \cap B \forall A, B \text{ in } P(x)$. Where P(x) is the power Set of *x*. Show that *x* is the identity element for this operation and *x* is the only invertible element in P(x) w.r.t.o the operation *

11. Define a binary operation * on the set {0,1,2,3,4,5} as
$$a \times b = \begin{cases} a+b, & \text{if } a+b < 6 \\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$
 6

Show that Zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6-a being the inverse of a.

FUNCTIONS

FOUR MARKS QUESTION 2

6

2+2

1. Set $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and set $f = \{(1,4), (2, 5), (3, 6)\}$ be a function from A to B 1+2+1 show that f is one-one. But not onto

2. If
$$f(x) = \frac{4x+3}{6x-4}$$
: $x \neq \frac{2}{3}$ 2+2

Show that *fof* (*x*) = *x*, (Identity function) $\forall x \neq \frac{2}{3}$ find the inverse of *f*?

- 3. Set $Y = \{n^2 : n \in N\} \subset N$. Consider $f : N \to Y$ as $f(n) = n^2$. Show that f is invertible. Find 2+2 the inverse of f.
- 4. If $f: x \to Y$ and $g: Y \to Z$ be two invertible function. Then *gof* is also invertible with 2+2 $(gof)^{-1} = f^{-1}og^{-1}$
- 5. Find gof and fog, if2+2

(i)
$$f(x) = |x| \text{ and } g(x) = \left(\frac{5x-2}{3}\right)$$

- 6. Find g of and fog, if $f(x) = 8x^3$ and $g(x) = x^{1/3}$
- 7. Consider $f: R \to R$ given by f(x) = 4x+3. Show that *f* is invertible. Find the inverse of *f*. 2+2
- 8. Consider $f:\{1,2,3\} \to \{a,b,c\}$ given by f(1) = a, f(2) = b and f(3) = c. Find f^{-1} and show 2+2 that $(f^{-1})^{-1} = f$
- 9. If f, g and h be functions from R to R

(i)
$$(f+g)o h = f oh + g oh$$

(ii) (f. g)o h = (f o h). (g o h)

- 10. Show that if $f: A \to B$ and $g: B \to C$ are one-one-onto then $gof: A \to C$ is also oneone-onto
- 11. Prove that the function $f: R \to R$ defined as $f(x) = x^2$ is Neither one-one nor onto 2+2
- 12. Prove that an invertible function has a unique inverse. 2+2
- 13. If $f: A \rightarrow B$ is an invertible function, then prove that *f* is one-one onto 2+2
- 14. Set *A* and *B* be two non-empty Sets. 2+2Show that the function $f:(A \times B) \rightarrow B \times A: f(a,b) = (b,a)$ is *a* bijective function.
- 15. Find fog and gof, if $f: R \to R$ and $g: R \to R$ are given by $f(x) = \cos x$ and $g(x) = 3x^2$ $1+\frac{1}{2}+\frac{1}{2}+1}$ Show that $fog \neq gof$

BINARY OPERATION

FOUR (4) MARKS QUESTION

16. Show that subtraction and division are not binary operations on N.
17. On the Set N of are natural numbers, a binary operation * defined as m * n = 1cm (mn).
17. Show that * is commutative and also associative.
18. Set A = NxN and * be the binary operation on A defined by

(a, b) * (c, d) = (a + c, b + d).
(a, b) * (c, d) = (a + c, b + d).

Show that * is commutative and associative. Find the identity element for * on A. If any.

