UNIT-IV

CHEPTER - (Matrices and its application)

Section ' A '

1 Mark each

1. If the order of a matrix A is $m \times n$ and that of a matrix B is $n \mathrm{x} p$. Then what is the order of the matrix AB .
2. If A is a square matrix of order 3×3 and $|A|=2$ find $|\operatorname{adj} A|$
3. If $A=\left[\begin{array}{rr}1 & 2 \\ 3 & -4\end{array}\right]$ Find $\mathrm{A}+\mathrm{I}$ where I is the identity matrix of order 2 .
4. Construct a 2×2 matrix whose elements are given by $R i j=i+j \forall \mathrm{I}=1,2 j=1,2$
5. If order of a matrix $A B$ is 2×3 and order of the matrix A is 2×2, then what is the order of the matrix B.
6. If $A=\left[\begin{array}{rr}1 & 0 \\ 2 & -1\end{array}\right], B=\left[\begin{array}{rr}1 & -5 \\ -3 & 2\end{array}\right]$ Find $A-B$.
7. What is the number of all possible matrices of order 3×3 with each entry 0 or 1 . (zero of one)
8. Construct a 2×3 matrix whose elements are $\frac{i+j}{2}$,
9. If a matrix has 6 elements, what are the possible orders it can have.
10. If $\left[\begin{array}{lc}3 x+2 & 5 \\ 2 & x+1\end{array}\right]=\left[\begin{array}{ll}5 & 5 \\ 2 & 2\end{array}\right]$ Find the value of x.
11. If $A=\operatorname{diag}[2,-2,7]$ and $B=\operatorname{diag}[-1,2,4]$ then find $A+B$.
12. If matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 6 & 1 & 2 \\ 0 & -4 & 5\end{array}\right]$ Find the $(1,3)^{\text {th }}$ element of A.
13. What is the order of the matrix $\left[\begin{array}{ll}1 & 5\end{array}\right]$.
14. If $X+Y=\left[\begin{array}{rr}1 & -5 \\ 6 & 2\end{array}\right]$ and $X=\left[\begin{array}{lr}1 & -2 \\ -3 & 4\end{array}\right]$ find Y.
15.

Write the following equations in the form of a single matrix equation $\begin{aligned} & 3 x+10 y=7 \\ & 5 x+15 y=11\end{aligned}$
16. If $A=\left(\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right)$ find ${ }^{1} \longrightarrow \mathrm{~A}$
17. Give an example of a symmetric matrix.
18. If $A=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$ then find $A^{2 .}$
19. If $A=\left[\begin{array}{rr}2 & 5 \\ 3 & -4\end{array}\right]$ Find adj A.
20. If A and B are two invertible square matrix then $(A B)^{-1}$ is equal to \qquad

Section ' \mathbf{B} '

4 Mark each
1.

If $A=\left[\begin{array}{ll}3 & 4 \\ 2 & 5\end{array}\right]$ and $B=\left[\begin{array}{rrr}1 & 3 & 4 \\ 0 & -2 & 2\end{array}\right]$
Find AB or BA which ever exist.
2.

If $2 X+3 Y=\left[\begin{array}{ll}1 & 0 \\ 2 & 5\end{array}\right]$ and $3 X+2 Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ Find X and Y .
3.

If $A=\left[\begin{array}{rr}8 & 0 \\ 4 & -2 \\ 3 & 6\end{array}\right]$ and $B=\left[\begin{array}{rr}2 & -2 \\ 4 & 2 \\ -5 & 1\end{array}\right]$ then find the matrix X such that $2 A+3 X=5 B$.
4.

For the matrix $A=\left[\begin{array}{rrr}1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3\end{array}\right]$ show that $\mathrm{A}+\mathrm{A}^{-}$is symmetric.
5. Simplify $\sin \theta\left[\begin{array}{lr}\sin \theta & -\operatorname{Cos} \theta \\ \operatorname{Cos} \theta & \operatorname{Sin} \theta\end{array}\right]+\operatorname{Cos} \theta\left[\begin{array}{lr}\operatorname{Cos} \theta & \sin \theta \\ -\sin \theta & \operatorname{Cos} \theta\end{array}\right]$.
6. Show that the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{3}-4 A^{2}+A=0$.
7. If $A=\left[\begin{array}{rr}3 & 4 \\ -4 & -3\end{array}\right]$ Find $+(\mathrm{A})$ when $f(x)=x^{2}-5 x+7$
8. If $A=\left[\begin{array}{rr}3 & 1 \\ -1 & 2\end{array}\right]$ and $A^{2}-5 A+7 I=0$ Hence find A^{-1}
9. If A and B are symmetric matrices prove that $A B-B A$ is s skew symmetric matrix.
10. Solve for x and y

$$
\left[\begin{array}{ll}
x & y \\
3 y & x
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

11. If $A=\left[\begin{array}{ll}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right]$ show that $\mathrm{A}^{1} \mathrm{~A}=\mathrm{I}$
12. If $A=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & -5 \\ -1 & 3\end{array}\right]$ then show that B is inverse of A.
13.

Using elementary has formations find A^{-1} of $A=\left[\begin{array}{rr}1 & -1 \\ 2 & 3\end{array}\right]$
14. Show by elementary row operation A^{-1} do Show by elementary such that doesn't exist if $A=\left[\begin{array}{rc}6 & -3 \\ -2 & 1\end{array}\right]$.
15. Find a matrix X such that $2 A+B+X=0$ where $A=\left[\begin{array}{rr}-1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{rr}3 & -2 \\ 1 & 5\end{array}\right]$.

Section ' \mathbf{C} '

6 Mark each

1. If $A=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ then prove that $A^{n}=\left[\begin{array}{lc}\cos n \theta & \sin n \theta \\ -\sin n \theta & \cos n \theta\end{array}\right], n \in N$.
2.

Express the matrix $\left[\begin{array}{rrr}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrix.
3. By using elementary row operation find the inverse of the matrix
$A=\left[\begin{array}{rrr}3 & -1 & -2 \\ 2 & 0 & -1 \\ 3 & -5 & 0\end{array}\right]$.
4. Find the matrix X so that $X=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{rrr}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
5. If $A=\left[\begin{array}{rr}2 & -1 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{ll}5 & 2 \\ 7 & 4\end{array}\right], \mathrm{C}=\left[\begin{array}{ll}2 & 5 \\ 3 & 8\end{array}\right]$ Find a matrix D such that $C D-A B=0$.
6.

Find the value of x if $\left[\begin{array}{lll}1 & x & 1\end{array}\right]\left[\begin{array}{lll}1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ x\end{array}\right]=[0]$
7.

Express the matrix $\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ as the sum of a symmetric and skew symmetric matrix.
8.

If $A=\left[\begin{array}{rrr}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{rrr}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$ Find AB and use this result in solving

$$
x-y+z=4
$$

the following system of equations:- $x-2 y-2 z=9$

$$
2 x+y+3 z=1
$$

