GROUP - I

 TOPIC - RELATION

 TOPIC - RELATION}

1 MARKS QUESTION

1. If A \& B are any two non-empty sets, then a subject of $A X B$ is called
2. If $(x, x) \in R$ for each element $x \in A$ then the relation R in A is
3. If $x R y=>y R x \forall x, y \in A$,then the relation R in A is
4. If $(x, y) € R$ and $(y, z) \in R \forall x, y, Z \leftarrow A$ then the relation R in A is.
5. Write the domain of the Relation
$R=\{(-1,1),(1,1),(2,4)(-3,5)\}$
6. Find the range of relation
$R=\{(2,3),(-1,2),(0,1),(4,5)\}$
7. If $\mathrm{r}=\left\{X, \frac{1}{X}\right\}: \mathrm{x} \in \mathrm{N}$ and $\left.1 \leq \mathrm{x} \leq 4\right)$. List the elements of R .
8. If $\mathrm{A}=\{1,2\}$. How many equivalence relation on set A is possible ?
9. The relation $R:\{1,2,3\} \rightarrow\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is
10. If $A=\{a, b, c\}$ and R is a relation in A given by $R=\{(a, a)(a, b)(a, c)(b, a)(c, a)\}$
Whether R is symmetric or not.
11. Whether the relation R in the set $\{1,2,3)$ given by $R=\{(1,2),(2,1)\}$ is transitive or not.
12. The relation R in the set A of human brings in a town at a particular time is given by $R=\{(x, y) \in A X A: x$ is brotherof $Y\}$. Is it symmetric ?
13. If $A=\{1,2,3,4,6\}$ and let R be a relation on a defined by $R=\{(a, b): a \in A, b \in A$ and a divides $b\}$. List the elements of R.
14. Let $R=\left\{\left(a, a^{3}\right): a\right.$ is a prime number less than 10$\}$. Find R.
15. If R_{1} and R_{2} are reflexive relation in a set A, then $R_{1} \cap R_{2}$ is \qquad relation.
16. If $A=\{1,3,5\}, B=\{9,11\}$ and let $R=\{(a, b) \in A X B: a-b$ is odd $\}$. Write the relation R.
17. If $A=\{a, b, c\}$. How many equivalence relation on the set A is possible.
18. The relation R in the set A of human beings in a town at a particular time given by $R=\{(x, y): x$ and y work at the same place $\}$ of what type ?
19. If $A=\{3,5,7\}$ and $B=\{2,4,9\}$ and R is a relation from A to B given by $a \leq b$ for all $a \in A$ and $b \in B$.
write R as a set of ordered pair.
20. How many number of equivalence relations are there on the set $\{3,4,5\}$ containing $\{3,4\}$ and $\{4,3\}$?

4 MARKS QUESTIONS

1. Let L be the set of all lines in a place and R be the relation in L defined as $R=\left\{\left(L_{1}, L_{2}\right): L_{1}\right.$ is perpendicular to $\left.L_{2}\right\}$. Show that R is symmetric but not transitive.
2. Show that the relation R in the set $A=\{1,2,3,4,5,6\}$. Defined as $R=\{(x, y)$: y is divisible by $x\}$ is (i) transitive (ii) not symmetric.
3. Let R be the relation in the set $A=\{1,2,3,4\}$ - defined by $R=\{1,2),(2,2),(1,1),(4,4)$, $(1,3),(3,3),(3,2)\}$. Show that R is (i) reflexive (ii) transitive
4. Show that the relation $R=\{a, b): a>b\}$ on N is (i) transitive (ii) not reflexive
5. On the set S of all real numbers. Define a relation $R=\{(a, b): 1+a b>0\}$. Show that R is (i) reflexive (ii) not transitive
6. On the set of all real numbers, define a relation $\left.R=\{a, b): a<b^{2}\right\}$. Show that R is (i) not symmetric (ii) not transitive
7. Let $A=\{1,2,3,4,5,6\}$. Consider a relation R on A, defined by $R=\{(a, b): b=a+1\}$. Show that R
is (i) not symmetric (ii) not transitive
8. Show that the relation R in the set $\{1,2,3\}$ given by $R=\{(1,1),(2,2),(3,3),(1,2),(2,3)\}$ is
(i) not symmetric (ii) not reflexive
9. Give an example of a relation which is (i) symmetric (ii) not transitive
10. Give an example of a relation which is (i) symmetric (ii) not reflexive
11. Give an example of a relation which is (i) transitive (ii) not reflexive
12. Show that the relation R in \mathbf{R} defined as $R=\{(a, b): a \leq b\}$ is (i)transitive (ii)not transitive
13. Show that the relation R on a set $A=\{1,2,3,4, \ldots \ldots \ldots . .14\}$ defined as $R=\{(x, y): 3 x-y=0\}$ is neither reflexive nor symmetric
14. Show that the relation R in the set N of natural number defined as $R=\{(x, y): y=x+5$ and x $<4\}$ is (i) not reflexive (ii) transitive
15. Give an example of a relation which is (i) reflexive (ii) transitive

6 MARKS QUESTIONS

1. Let A be the set of all lines in $x y$ - plane and R be a relation in A, defined by $R=\{(L 1, L 2)$: L1 || L2\}
Show that (i) R is reflexive
(ii) R is symmetric
(iii) R is transitive
(iv) Find the set of all lines related to the line $y=3 x+5$
2. Show that the relation R in the set $A=\{x \in z: 0 \leq x \leq 12\}$ given by .
$R=\{(a, b):|a-b|$ is a muttipte of 4$\}$ is
(i) reflexive
(ii) symmetric
(iii) transitive
(iv) Find the set of all elements related to 1
3. Let s be the set of all points in a plane and let R be a relation in s defined by $R=\{(A, B): \delta(A, B)<2$ units $\}$, where $\delta(A, B)$ isthe distance between points $A \& B$.
Show that (i) R is reflexive
(ii) R is symmetric
(iii) R is not transitive
4. Let $R=\{(a, b): a, b \in Z$ and $(a-b)$ is divisible by 5$\}$. Show that R is an equivalence relation on Z.
5. Show that the relation R defined in the set A of all polygons as
$R=\{(P 1, P 2)$: P1 \& P2 have same number of slides) is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3,4 and 5 ?
6. Let N be the set of all natural number and let R be a relation on $N X N$ defined by
$(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \mathrm{ad}=\mathrm{bc} \longleftrightarrow$
Show that R is an equivalence relation.
7. Show that the relation R on $N X N$ defined by $(a, b) R(c, d) \Longleftrightarrow a+d=b+c$ is an quivalence relation.
8. Let A be the set of all triangles in a plane. Show that the relation $R=\{(\Delta 1, \Delta 2): \Delta 1 \sim \Delta 2\}$ is an equivalence relation.
9. show that the relation R in the set $A=\{1,2,3,4,5\}$ given by $R=\{(a, b:|a-b|$ is even $\}$ is an equivalence relation.
10. Show that the relation R in the set Z of integers given by $R=\{(a, b): 2$ divides $a-b\}$ is an equivalence relation.
Or
Let $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a}=\mathrm{b} 2, \mathrm{a}, \mathrm{be} \mathrm{N}\}$
Show that (i) R is not reflexive
(ii) R is not symmetric
(iii) R is not transitive
