<u>UNIT-I</u>

GROUP - |

TOPIC - RELATION

1 MARKS QUESTION

- 1. If A & B are any two non-empty sets, then a subject of A X B is called
- 2. If $(x, x) \in R$ for each element $x \in A$ then the relation R in A is
- 3. If x R y=>yRx $\forall x, y \in A$, then the relation R in A is....
- 4. If $(x,y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R} \forall x, y, Z \leftarrow A$ then the relation R in A is....
- 5. Write the domain of the Relation R = {(-1, 1), (1,1), (2, 4) (-3, 5)}
- 6. Find the range of relation $R = \{(2, 3), (-1, 2), (0, 1), (4, 5)\}$
- 7. If $r = \left\{ X, \frac{1}{X} \right\}$: $x \in N$ and $1 \le x \le 4$). List the elements of R.
- 8. If A = {1, 2}. How many equivalence relation on set A is possible ?
- 9. The relation R :{1, 2, 3} \rightarrow {1, 2, 3} given by R = {(1, 1), (2,2), (3, 3), (1, 2), (2, 3)} is
- 10. If $A = \{a, b, c\}$ and R is a relation in A given by $R = \{(a, a) (a, b) (a, c) (b, a) (c, a)\}$ Whether R is symmetric or not.
- 11. Whether the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2), (2, 1)\}$ is transitive or not.
- 12. The relation R in the set A of human brings in a town at a particular time is given by $R = \{(x, y) \in AXA : x \text{ is brotherof } Y\}$. Is it symmetric ?
- 13. If $A = \{1, 2, 3, 4, 6\}$ and let R be a relation on a defined by R = {(a, b) : a $\in A$, b $\in A$ and a divides b}. List the elements of R.
- 14. Let $R = \{(a, a^3) : a \text{ is a prime number less than 10}\}$. Find R.
- 15. If R_1 and R_2 are reflexive relation in a set A, then $R_1 \cap R_2$ is..... relation.
- ^{16.} If $A = \{1, 3, 5\}$, $B = \{9, 11\}$ and let $R = \{(a, b) \in A \times B : a b \text{ is odd}\}$. Write the relation R.
- 17. If $A = \{a, b, c\}$. How many equivalence relation on the set A is possible.
- 18. The relation R in the set A of human beings in a town at a particular time given by $R = \{(x, y) : x \text{ and } y \text{ work at the same place}\}$ of what type ?
- 19. If A={3,5,7} and B= {2,4,9} and R is a relation from A to B given by $a \le b$ for all $a \in A$ and $b \in B$.
 - write R as a set of ordered pair.
- 20. How many number of equivalence relations are there on the set {3, 4, 5} containing {3, 4} and {4, 3} ?

4 MARKS QUESTIONS

- 1. Let L be the set of all lines in a place and R be the relation in L defined as $R=\{(L_1, L_2) : L_1 \text{ is perpendicular to } L_2\}$. Show that R is symmetric but not transitive.
- Show that the relation R in the set A= {1,2,3,4,5,6}. Defined as R ={(x, y) :y is divisible by x} is (i) transitive (ii) not symmetric.
- 3. Let R be the relation in the set A = $\{1, 2, 3, 4\}$ defined by R = $\{1, 2)$, (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2). Show that R is (i) reflexive (ii) transitive
- 4. Show that the relation $R = \{a, b\}$: a > b on N is (i) transitive (ii) not reflexive
- 5. On the set S of all real numbers. Define a relation R = {(a, b) : 1+ab>0}. Show that R is (i) reflexive (ii) not transitive
- On the set of all real numbers, define a relation R = {a, b) : a<b²}. Show that R is
 (i) not symmetric (ii) not transitive
- 7. Let $A = \{1, 2, 3, 4, 5, 6\}$. Consider a relation R on A, defined by $R = \{(a, b) : b = a+1\}$. Show that R

is (i) not symmetric (ii) not transitive

- 8. Show that the relation R in the set $\{1,2,3\}$ given by R = $\{(1, 1), (2,2), (3,3), (1,2), (2,3)\}$ is (i) not symmetric (ii) not reflexive
- 9. Give an example of a relation which is (i) symmetric (ii) not transitive
- 10. Give an example of a relation which is (i) symmetric (ii) not reflexive
- 11. Give an example of a relation which is (i) transitive (ii) not reflexive
- 12. Show that the relation R in **R** defined as $R=\{(a,b) : a \le b\}$ is (i)transitive (ii)not transitive
- 13. Show that the relation R on a set A= {1,2,3,4,....,14} defined as R={(x,y) :3x-y=0} is neither reflexive nor symmetric
- 14. Show that the relation R in the set N of natural number defined as $R = \{(x, y): y=x+5 \text{ and } x < 4\}$ is (i) not reflexive (ii) transitive
- 15. Give an example of a relation which is (i) reflexive (ii) transitive

6 MARKS QUESTIONS

- 1. Let A be the set of all lines in xy plane and R be a relation in A, defined by R = {(L1, L2) : L1 || L2}
 - Show that (i) R is reflexive
 - (ii) R is symmetric
 - (iii) R is transitive
 - (iv) Find the set of all lines related to the line y = 3x + 5
- 2. Show that the relation R in the set A = {x \in z : 0 \leq x \leq 12} given by .
 - $R = \{(a, b) : |a b| \text{ is a muttipte of 4} \} \text{ is }$
 - (i) reflexive
 - (ii) symmetric
 - (iii) transitive
 - (iv) Find the set of all elements related to 1
- 3. Let s be the set of all points in a plane and let R be a relation in s defined by $R = \{(A, B) : \delta(A, B) < 2 \text{ units}\}, \text{ where } \delta(A, B) \text{ is the distance between points } A \& B.$ Show that (i) R is reflexive
 - (ii) R is symmetric
 - (iii) R is not transitive
- 4. Let $R = \{(a, b): a, b \in Z \text{ and } (a-b) \text{ is divisible by 5}\}$. Show that R is an equivalence relation on Z.
- 5. Show that the relation R defined in the set A of all polygons as R= {(P1,P2): P1 & P2 have same number of slides) is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5 ?
- Let N be the set of all natural number and let R be a relation on N X N defined by (a, b) R (c, d) ad = bc
 Show that R is an equivalence relation.
- 7. Show that the relation R on N X N defined by $(a, b)R(c, d) \le a + d = b + c$ is an quivalence relation.
- 8. Let A be the set of all triangles in a plane. Show that the relation $R = \{(\Delta 1, \Delta 2) : \Delta 1 \sim \Delta 2\}$ is an equivalence relation.
- 9. show that the relation R in the set A = $\{1,2,3,4,5\}$ given by R = $\{(a, b : |a b| \text{ is even}\}$ is an equivalence relation.
- Show that the relation R in the set Z of integers given by R = {(a, b) : 2 divides a b} is an equivalence relation. Or
 Let R={(a,b) :a=b2,a,be N}

Show that (i) R is not reflexive (ii) R is not symmetric

(iii) R is not transitive